Photoelectron Spectra and Molecular Properties¹ of *trans*-Dihalogenoethylenes: Substituent Effects Spin-orbit Coupling^{1,2}

By H. BOCK* and K. WITTEL

(University of Frankfurt, Germany)

Summary The photoelectron spectra of *trans*-dihalogenoethylenes are assigned considering spin-orbit coupling and allow unambiguous estimates of inductive, conjugative, and hyperconjugative contributions of the halogen substituent effects.

WE report the photoelectron spectra of *trans*-dihalogenoethylenes³ (Figure 1), from which the lowest five vertical ionization energies are easily determined (Table 1).

TABLE .	l
---------	---

Vertical ionization energies IE_n (eV)

n	1	2	3	4	5
Cl Br I	9·72 9·56 8·92	$11.79 \\ 11.04 \\ 9.86$	$12.01 \\ 11.04 \\ 10.11$	12.55 11.57 10.45	13.79 12.90 11.85

Our assignment is based on a simple qualitative MO model (Figure 2) in which two "lone pair" orbitals on each halogen and the ethylene π orbital are combined according to their irreducible representations in C_{2h} to yield three π orbitals

FIGURE 1. Photoelectron spectra of trans-dihalogenoethylenes.

 $(1a_u, 1b_g, 2a_u)$ and two σ orbitals $(4b_u, 5a_g)$. The latter are destabilized by "through bond" interaction,⁴ the antibonding admixture of four a_g orbitals being presumably more effective. From the ionization energies of *trans*-dichloroethylene,⁵ (Table 1) various Hueckel parameters may be extracted; the energy of the nonbonding $1b_g$ orbital (12.55 eV) is a good value for the chlorine coulomb integral α_{c1} .⁶ The π -stabilization energy, $\Delta \pi = E(1a_u) - E(1b_g)$, is therefore (13.79 - 12.55) e.v. which when subtracted from the first ionization potential gives $\alpha_{c=c} = 1.24 + 9.72 = 10.96$ eV. Comparison with the first ionization potential of ethylene⁷

FIGURE 2. Qualitative orbital diagram for trans-dihalogenoethylenes.

itself results in $\Delta \alpha_{C-C} = 10.96 - 10.51 = 0.45 \text{ eV}$, which represents the inductive substituent effect of chlorine. The secular polynomial $(\alpha_{C-CI} - IE)(\alpha_{CI} - IE) - \beta_{C-CI}^2 = 0$, gives a resonance integral β_{C-CI} 1.9 eV. Finally the "through bond" shifts $\Delta(5a_g) = 12.55 - 11.79 = 0.76 \text{ eV}$ and $\Delta(4b_u) = 12.55 - 12.01 = 0.54 \text{ eV}$ can be read directly from the spectra. These estimates, together with those of the bromo- and iodo-derivatives, approximated in the same way, are shown in Table 2.

TABLE 2

MO parameters (eV) from photoelectron spectra

х	$\alpha_{\mathbf{X}}$	$\Delta \pi$	αc=c	$\Delta \alpha_{C=C}$	β_{C-X}	$\Delta(5a_g)$	$\Delta(4b_u)$
Cl Br I	$12.55 \\ 11.57 \\ 10.3$	1·24 1·33 1·4	10·96 10·89 10·5	0·45 0·38 0·0	1∙9 1∙6 1∙5	0·76 0·53 0·2	$0.54 \\ 0.53 \\ 0.2$

For *trans*-dibromoethylene, the photoelectron assignment is analogous, except that the lone pair orbitals $4b_u$ and $5a_g$ are degenerate as shown by the doubled intensity of the second band (Figure 1).

Spin-orbit coupling in bromine $(Br_2^+ 0.33 \text{ eV})$ is large compared to that in chlorine $(Cl_2^+ 0.07 \text{ eV})$, but in *trans*dibromoethylene σ - and π -interactions (Table 2) still prevail. In the iodo-derivative however spin-orbit interactions $(I_2^+ 0.63 \text{ eV})$ can no longer be neglected. This local coupling mixes σ - and π -type electron pairs on each iodine and prohibits any classification of the corresponding molecular orbitals with respect to the lost mirror plane σ_h . With respect to the centre of inversion retained, mixing is only allowed within even (g) or odd (u) functions (Figure 3).

Spin-orbit coupling can be incorporated into the elegant one-electron-MO model used by Brogli and Heilbronner.8 Clearly, the two $(\sigma_1 + \pi_2)_g$ orbitals do not imply any degeneracy but rather complete $\sigma - \pi$ mixing (C_{2h} double group: $e_{1/2g}$). The latter can be neglected among the odd orbitals because of strong π interaction ($\beta_{c-J} = 1.5 \text{eV}$, Table 2).

FIGURE 3. Qualitative orbital diagram for spin orbit coupling in trans-di-iodoethylene.

All three electron pair orbitals are "through bond" destabilized. Calculations^{2,8} restrict $\Delta(\sigma_1 + \pi_2)_g \ge 0.6 \text{ eV}$, the experimental value (Table 1:0.59 eV) being in excellent agreement. The $(\sigma_1 + \pi_2)_g$ assignment of bands 2 and 4 in

The MO parameters[†] (Table 2) obtained from the photoelectron spectra of the trans-dihalogenoethylenes deserve further comment.

Usually a distinction is made between inductive and conjugative parts of substituent effects, hyperconjugation contributing to both of them. Normally neither effect can be measured separately.

Within our model compounds the parameter α_x —taken from the only occupied b_g orbital—represents the unperturbed halogen lone pair $(IE_{Cl} > IE_{Br} > IE_{I})$. Combination of the observed five lowest ionization potentials yields $\Delta \alpha_{C=C}$, which can be considered a fair estimate of the separated inductive effect σ_x due to partial electron transfer

among low lying orbitals ($\sigma_{cl} > \sigma_{Br} \gg \sigma_{I} \sim 0$). The resonance term β_{c-x} reflects diminishing overlap (Cl > Br > I). This is opposed by a decreasing energy gap between the interacting orbitals $\Delta \alpha = \alpha_{x} - \alpha_{c=c}$ (Cl > Br $> J \approx 0$), resulting in an almost constant π donor strength as shown by the $\Delta \pi$ values.

In addition the rather large influence of hyperconjugation—that is "through bond" shifts between σ orbitals of the same irreducible representation-is demonstrated by the parameters $\Delta(5a_g)$ and $\Delta(4b_u)$.

We thank Professor E. Koerner von Gustorf (Max Planck Institute Mülheim, Germany) for a sample of trans-dibromoethylene.

(Received, 15th March 1972; Com. 430.)

 \dagger When transferred to other compounds, the MO parameters in Table 2 are hardly more reliable than 0.1-0.2 eV.

¹ For previous paper in this series see H. Bock and H. Stafast, Chem. Ber., 1972, 105, 1158.

^a Taken in part from the thesis of K. Wittel.

³ Cf., H. Bock and G. Wagner, Angew. Chem., 1972, 84, 119; Angew. Chem. Internat. Edn., 1972, 11, 150, or ref. 1.
⁴ R. Hoffmann, A. Imamura, and W. J. Hehre, J. Amer. Chem. Soc., 1968, 90, 1499.
⁵ Cf. N. Jonathan, K. Ross, and V. Tomlinson, Internat. J. Mass. Spectrometry Ion Phys., 1970, 4, 51; R. F. Lake and H. Thompson, Proc. Roy. Soc., 1970, A315, 323. Careful re-examination of the spectrum shows that the peak at 11.93 eV is more likely due to vibrational fine structure (v = 560 ± 80 cm⁻¹), since a third component can be located.
⁶ A. Streitwieser, jun., "Molecular Orbital Theory for Organic Chemists", Wiley & Sons, London 1961, p. 23, 117.
⁷ D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, "Molecular Photoelectron Spectroscopy", Wiley-Interscience, London,

1970.

⁸ F. Brogli and E. Heilbronner, Helv. Chim. Acta, 1971, 54, 1423.