Photoelectron Spectra and Molecular Properties' of trms-Dihalogenoethylenes : Substituent Effects Spin-orbit Coupling^{1,2}

By H. **BOCK*** and K. **WITTEL**

(University of Frankfurt, Germany)

Summary The photoelectron spectra of trans-dihalogenoethylenes are assigned considering spin-orbit coupling and allow unambiguous estimates of inductive, conjugative, and hyperconjugative contributions of the halogen substituent effects.

WE report the photoelectron spectra of *trans*-dihalogenoethylene9 (Figure **l),** from which the lowest five vertical ionization energies are easily determined (Table **1).**

Vertical ionization energies IE, (eV)

Our assignment is based on a simple qualitative MO model (Figure **2)** in which two "lone pair" orbitals on each halogen and the ethylene π orbital are combined according to their irreducible representations in C_{2h} to yield three π orbitals

FIGURE 1. *Photoelectron spectra of trans-dihalogenoethylenes.*

 $(1a_u, 1b_g, 2a_u)$ and two σ orbitals $(4b_u, 5a_g)$. The latter are destabilized by "through bond" interaction,⁴ the antibonding admixture of four *ag* orbitals being presumably more effective.

From the ionization energies of *trans*-dichloroethylene,⁵ (Table **1)** various Hueckel parameters may be extracted; the energy of the nonbonding $1b_q$ orbital (12.55 eV) is a good value for the chlorine coulomb integral α_{c1} .⁶ The π -stabilization energy, $\Delta \pi = E(la_u) - E(lb_g)$, is therefore π -stabilization energy, $\Delta \pi = E(1a_u) - E(1b_g)$, is therefore (13.79 - 12.55) e.v. which when subtracted from the first ionization potential gives $\alpha_{C=0} = 1.24 + 9.72 = 10.96 \text{ eV}$. Comparison with the first ionization potential of ethylene'

FIGURE 2. Qualitative orbital diagram for trans-dihalogeno*ethylenes.*

itself results in $\Delta \alpha_{c-c} = 10.96 - 10.51 = 0.45 \text{ eV}$, which represents the inductive substituent effect **of** chlorine. The represents the inductive substituent effect of chlorine. The secular polynomial $(\alpha_{c-q} - IE)(\alpha_q - IE) - \beta_{c-q}^2 = 0$, gives a resonance integral β_{c-q} 1.9 eV. Finally the "through bond" shifts $\Delta(5a_q) = 12.55 - 11.79 = 0.76$ eV "through bond" shifts $\Delta(5a_g) = 12.55 - 11.79 = 0.76 \text{ eV}$
and $\Delta(4b_u) = 12.55 - 12.01 = 0.54 \text{ eV}$ can be read directly and $\Delta(4b_u) = 12.55 - 12.01 = 0.54$ eV can be read directly from the spectra. These estimates, together with those of the bromo- and iodo-derivatives, approximated in the same way, are shown in Table **2.**

TABLE 2

MO parameters (eV) *from photoelectron spectra*

For trans-dibromoethylene, the photoelectron assignment is analogous, except that the lone pairorbitals *4b,* and *5a,* are degenerate as shown by the doubled intensity of the second band (Figure **1).**

Spin-orbit coupling in bromine $(Br_2^+ 0.33 \text{ eV})$ is large compared to that in chlorine $(Cl₂⁺ 0.07 eV)$, but in transdibromoethylene σ - and π -interactions (Table 2) still prevail. In the iodo-derivative however spin-orbit interactions $(I_2 + 0.63 \text{ eV})$ can no longer be neglected. This local coupling mixes σ - and π -type electron pairs on each iodine and prohibits any classification of the corresponding molecular orbitals with respect to the lost mirror plane σ_h . With respect to the centre of inversion retained, mixing is only allowed within even (g) or odd (u) functions (Figure 3).

Spin-orbit coupling can be incorporated into the elegant one-electron-MO model used by Brogli and Heilbronner.8 Clearly, the two $(\sigma_1 + \pi_2)_{\mathfrak{g}}$ orbitals do not imply any degeneracy but rather complete $\sigma-\pi$ mixing $(C_{2b}$ double group: $e_{1/2g}$). The latter can be neglected among the odd orbitals because of strong π interaction ($\beta_{C-J} = 1.5$ eV, Table 2).

FIGURE **3.** Qualitative orbital diagram *for* spin orbit coupling in trans-di-iodoethylene.

All three electron pair orbitals are "through bond" destabilized. Calculations^{2,8} restrict $\Delta(\sigma_1 + \pi_2)_{\mathfrak{g}} \geqslant 0.6 \text{ eV}$, the experimental value (Table **1 :0.59** eV) being in excellent agreement. The $(\sigma_1 + \pi_2)_{\mathbf{g}}$ assignment of bands 2 and 4 in

The MO parameterst (Table **2)** obtained from the photoelectron spectra of the trans-dihalogenoethylenes deserve further comment.

Usually a distinction is made between inductive and conjugative parts of substituent effects, hyperconjugation contributing to both of them. Normally neither effect can be measured separately.

Within our model compounds the parameter α_x —taken from the only occupied b_g orbital-represents the unperturbed halogen lone pair $(IE_{Cl} > IE_{Br} > IE_I)$. Combination of the observed five lowest ionization potentials yields $\Delta \alpha_{C-C}$, which can be considered a fair estimate of the separated inductive effect σ_x due to partial electron transfer yields $\Delta\alpha_{c-c}$, which can be considered a rair estimate of the separated inductive effect σ_x due to partial electron transfer among low lying orbitals $(\sigma_{C1} > \sigma_{Br} \gg \sigma_I \sim 0)$.
The resonance term β_{c-x} reflects d

The resonance term ρ_{c-x} renects diminishing overlap (Cl > Br > I). This is opposed by a decreasing energy gap between the interacting orbitals $\Delta \alpha = \alpha_x - \alpha_{c-0}$ (Cl > Br between the interacting orbitals $\Delta \alpha = \alpha_x - \alpha_{0=0}$ (Cl > Br > *J* \approx 0), resulting in an almost constant π donor strength as shown by the $\Delta \pi$ values.

In addition the rather large influence of hyperconjugation—that is "through bond" shifts between σ orbitals of the same irreducible representation-is demonstrated by the parameters $\Delta(5a_g)$ and $\Delta(4b_u)$.

We thank Professor E. Koerner von Gustorf (Max Planck Institute Miilheim, Germany) for a sample of trans-dibromoethylene.

(Received, 15th *March* **1972;** *Corn.* **430.)**

t When transferred to other compounds, the MO parameters in Table **2** are hardly more reliable than **0.1-0.2** eV.

For previous paper in this series see H. Bock and H. Stafast, Chem. *Ber.,* **1972, 105, 1168.**

Taken in part from the thesis **of** K. Wittel.

Cf., H. Bock and G. Wagner, Angew. Chem., 1972, 84, 119; Angew. Chem. Internat. Edn., 1972, 11, 150, or ref. 1.
R. Hoffmann, A. Imamura, and W. J. Hehre, J. Amer. Chem. Soc., 1968, 90, 1499.
Cf. N. Jonathan, K. Ross, and V Careful re-examination of the spectrum shows that the peak at **11.93** eV is more likely due to *Proc. Roy. Soc.,* **1970, A315, 323.** Frot. Roy. 300., 1970, A315, 323. Careful re-examination of the spectrum shows that vibrational fine structure $(v = 560 + 80 \text{ cm}^{-1})$, since a third component can be located.

A. Streitwieser, jun., ''Molecular Orbital Theory for Organic Chemists'', Wiley & Sons, London 1961, p. 23, 117.
D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, ''Molecular Photoelectron Spectroscopy'', Wiley-Inter **1970.**

F. Brogli and E. Heilbronner, *Helv.* Chim. Acta, **1971, 54, 1423.**